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Retinopathy of prematurity and ischemic brain injury resulting in periventricular white
matter damage are the main causes of visual impairment in premature infants.
Accurate optic disc (OD) segmentation has important prognostic significance for
the auxiliary diagnosis of the above two diseases of premature infants. Because of
the complexity and non-uniform illumination and low contrast between background
and the target area of the fundus images, the segmentation of OD for infants
is challenging and rarely reported in the literature. In this article, to tackle these
problems, we propose a novel attention fusion enhancement network (AFENet)
for the accurate segmentation of OD in the fundus images of premature infants
by fusing adjacent high-level semantic information and multiscale low-level detailed
information from different levels based on encoder–decoder network. Specifically,
we first design a dual-scale semantic enhancement (DsSE) module between the
encoder and the decoder inspired by self-attention mechanism, which can enhance
the semantic contextual information for the decoder by reconstructing skip connection.
Then, to reduce the semantic gaps between the high-level and low-level features,
a multiscale feature fusion (MsFF) module is developed to fuse multiple features
of different levels at the top of encoder by using attention mechanism. Finally,
the proposed AFENet was evaluated on the fundus images of preterm infants
for OD segmentation, which shows that the proposed two modules are both
promising. Based on the baseline (Res34UNet), using DsSE or MsFF module alone
can increase Dice similarity coefficients by 1.51 and 1.70%, respectively, whereas
the integration of the two modules together can increase 2.11%. Compared with
other state-of-the-art segmentation methods, the proposed AFENet achieves a high
segmentation performance.
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INTRODUCTION

Retinopathy of prematurity (ROP) and ischemic brain
injury resulting in periventricular white matter (PVWM)
damage can lead to visual impairment and even blindness of
prematurity (Mcloone et al., 2006; Chen and Smith, 2007).
In terms of ROP, retinal vascular proliferative blindness
disease frequently affects premature infants with low
birth weight. It is reported that 53,000 of the 15 million
premature infants worldwide require ROP treatment every
year (Agrawal et al., 2021). In addition, periventricular
leukomalacia or periventricular hemorrhage may cause
PVWM damage, which is considered to be a more common
cause of visual morbidity than ROP in premature infants
(Mcloone et al., 2006).

As the survival rates of preterm infants in modern neonatal
intensive care unit continue to improve, the prevalence of
neonatal ischemic brain injury and ROP will also increase.
Early diagnosis and timely treatment of ROP and PVWM
can effectively reduce visual impairment and prevent disease
blindness. The diagnosis and treatment of ROP are based
on stage, zone, and plus disease, which reflect the severity
of ROP (Aaberg, 1987; International Committee for the
Classification of Retinopathy of Prematurity, 2005). For
the plus disease, the diagnostic procedure for ROP is to
estimate the curvature of blood vessels in a predetermined
area around the optic disc (OD), while ROP zoning is
defined according to the location of the symptom of ROP
relative to the OD. Meanwhile, a previous study has shown
that the severity of ROP seems to be positively correlated
with a higher proportion of vertical to the horizontal optic
diameter (Brodsky and Glasier, 1993). In addition, several
studies have reported the association between IVH and
optic nerve hypoplasia (Burke et al., 1991; King and Cronin,
1993; Algawi et al., 1995; Oberacher-Velten et al., 2006).
Therefore, accuracy OD segmentation of prematurity is
extremely significant for the auxiliary diagnosis of these
two diseases.

The segmentation of OD has always been a research
hotspot because of its great significance for detecting other
anatomical structures in retinal images. OD often appears
as bright red circular or oval areas in fundus images, as
shown in Figure 1. The irregular OD shape, the diffusion
of OD region boundary, and the inconsistency of imaging
conditions make OD segmentation very challenging, especially
for premature infants. In the past, many related studies on
OD segmentation are proposed mainly including traditional
algorithms and deep learning (DL) algorithms. Traditional
algorithms of OD segmentation use either the intensity of OD
region or the point of origination of major vessels for OD
localization. The former assumes that the pixel intensity of
OD region is higher than that in other parts of the retina
(Li and Chutatape, 2001; Walter and Klein, 2001; Chrastek
et al., 2002). The main disadvantage of this method is that
OD may not be detected correctly in some images because
of pathology or uneven illumination. The latter method is
based on the assumption that the OD region is the starting

point of the major blood vessels of the eye (Hoover and
Goldbaum, 2003; Foracchia et al., 2004; Youssif et al., 2007).
However, this method may fail when blood vessels are blocked by
lesions. With the development of DL technology in recent years,
many convolutional neural network (CNN)–based methods,
such as fully convolutional network (FCN) (Long et al., 2015),
U-Net (Ronneberger et al., 2015), and their variants based
networks, have been developed for OD segmentation without
considering any prior knowledge, which can overcome the
inabilities of traditional technology. For example, Mohan et al.
(2018) introduced a prior CNN named P-Net and cascaded
the P-Net with their previously proposed Fine-Net, which
can further improve the performance of OD segmentation
(Mohan et al., 2019). Al-Bander et al. (2018) used a fully
convolutional DenseNet with symmetric U-shaped framework
for predicting the OD boundary, which achieved a high
segmentation accuracy. Fu et al. (2018) proposed M-Net for joint
OD and cup segmentation, which is based on multilabel deep
network and polar transformation. Liu et al. (2021) proposed a
densely connected depth-wise separable convolutional network
(DDSC-Net) for joint optic disc and cup segmentation, which
outperforms pOSAL (Kadambi et al., 2020), GL-Net (Jiang et al.,
2019), M-Net (Fu et al., 2018), and Stack-U-Net (Sevastopolsky
et al., 2019). As the encoder and decoder network (U-Net) was
proposed for medical image segmentation, many researchers
have focused on modifying the U-Net to further enhance the
ability of feature learning. For example, context encoder network
(CE-Net) was proposed by Gu et al. (2019) for 2D medical
image segmentation, which is based on attention mechanism
and outperforms the M-Net in the segmentation of OD.
Bhatkalkar et al. (2020) modified the basic architectures of
DeepLab v3 + and U-Net models (Ronneberger et al., 2015)
by integrating an attention module between the encoder and
decoder to obtain the better segmentation of OD. Similarly,
many variant networks for semantic segmentation tasks have
been proposed and achieved high segmentation performance,
such as PSPNet (Zhao et al., 2017), Attention U-Net (Oktay
et al., 2018), UNet++ (Zhou et al., 2018), and CPFNet
(Feng et al., 2020).

In conclusion, U-Net and its variants based on DL hold
promise for automated segmentation of OD in digital fundus
images. Recently, Agrawal et al. used the original U-Net for
the OD segmentation to assist ROP zoning (Agrawal et al.,
2021). As far as we know, this is the first time to study the OD
segmentation of preterm infants using DL. Different from the
segmentation of OD in adults, the OD segmentation of premature
infants is more difficult, mainly for the following two reasons:
(1) The fundus images of premature infants often have poor
image quality and low contrast due to subjective factors such as
illumination and eye movement in the actual shooting process
of fundus images; (2) due to preterm birth, the retinal structure
of preterm infants is often incompletely developed, resulting in
low contrast of fundus images, as shown in Figure 1. To handle
the above challenges and motivated by the previous successful
segmentation networks, we propose a novel attention fusion
enhancement network (AFENet) based on the modified encoder
and decoder network for automatic segmentation of OD in
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FIGURE 1 | Four examples of fundus images of premature infants, where the optic disc is in the green box.

premature infants. The main contributions of this article can be
summarized as follows:

(1) Two novel attention modules including dual-scale
semantic enhancement (DsSE) module and multiscale
feature fusion (MsFF) module are developed to fuse
adjacent high-level semantic information and multiscale
low-level detailed information of different levels between
the encoder and decoder, respectively.

(2) The proposed DsSE module and MsFF module can be
easily integrated in U-shape encoder–decoder network and
applied for the OD segmentation of premature infants.

(3) Extensive experiments are conducted to evaluate the
effectiveness of the proposed AFENet, and the results
show that the proposed AFENet outperforms the state-
of-the-art segmentation networks in OD segmentation of
premature infants.

The remainder of this article is organized as follows: the
proposed method for automatic OD segmentation of premature
infants is introduced in section “Methods.” Section “Experiments
and Results” presents the experimental results in detail. In
section “Conclusion and Discussion,” we conclude this article and
suggest future work.

METHODS

Overview
The proposed AFENet for OD segmentation of premature infants
is shown in Figure 2, which is based on encoder–decoder
U-shape architecture and consists of four main parts: feature
encoder, DsSE module, MsFF module, and feature decoder.
The feature encoder is used to extract spatial features from the
input fundus image, whereas the feature decoder is adopted to
construct the segmentation map from the encoded features. The
DsSE module is embedded between the encoder and decoder to
reconstruct the skip connection, whereas the MsFF module is
appended on the top of the encoder to fuse the multiscale feature
maps from low-level to high-level features, aiming at reducing the
semantic gaps between the high-level and low-level features.

Feature Encoder
Different from the original U-Net architecture, where each block
of encoder consists of two convolutional layers and a max
pooling layer for downsampling, the proposed AFENet uses
the pretrained ResNet34 (Apostolopoulos et al., 2017) as the
backbone of feature extractor, where the global average pooling
layer and the fully connected layer are removed. There are two
main reasons to use the pretrained ResNet34 as the backbone
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FIGURE 2 | An overview of the proposed AFENet for OD segmentation of premature infants. The AFENet consists of encoder, DsSE module, MsFF module, and
decoder, where the encoder and decoder are in blue and green solid boxes, respectively. In addition, “DsSE” and “MsFF” represent the dual-scale semantic
enhancement (DsSE) module and multiscale feature fusion (MsFF) module, respectively.

rather than the original U-Net in the encoding part. First, it is
inspired by previous studies (Gu et al., 2019; Feng et al., 2020)
that the residual blocks with shortcut mechanism in ResNet
can accelerate convergence of the network and avoid gradient
vanishing, as shown in the right side of Figure 2. Second, the
experimental results in “Experiments and Results” also show
that compared with the original U-Net, the performance of
pretrained ResNet34 as backbone in the encoding part had an
overall improvement.

Dual-Scale Semantic Enhance Module
In the original U-shape network, the skip connection
between the encoder and decoder is concatenation operator,
which is used to make up for the loss of fine information
caused by downsampling. However, it may ignore global
information, introduce irrelevant clusters, and produce
semantic gap due to the mismatch of receiving domain
(Feng et al., 2020). To solve the above problems and highlight
salient features, we designed a DsSE module as shown in
Figure 3, in which the global semantic information from
the next adjacent high-level feature map is fused to enhance
the semantic contextual information and reconstruct the
skip connection.

In the DsSE module, the skip connection is reconstructed
by combining the current feature map with the next adjacent
high-level feature map. Suppose that the current input feature
map is F ∈ RC,H,W and its next adjacent feature map is N ∈
R2C,H/2.W/2. As can be seen from Figure 3, the proposed DsSE
module mainly consists of six steps:

(1) To reduce the dimension of weights and computational
cost, a 1 × 1 convolution is first used to map the feature
map N into the same channel space as F, and then we
upsample the low-dimension feature map to get the same

size as F via bilinear interpolation, which is denoted as
Nup ∈ RC,H,W .

Nup = Upsample(Conv1 × 1(N)) ∈ RC,H,W (1)

(2) Three 1 × 1 convolutions are used to encode the feature
map Nup to query (Q) and encode the feature map F to key
(K) and value (V), respectively.

Q = Conv1× 1(Nup) ∈ RC/r,H,W (2)

K = Conv1× 1(F) ∈ RC/r,H,W (3)

V = Conv1× 1(F)) ∈ RC,H,W (4)

(3) We reshape and transpose Q to Q ∈ RH∗W,C/r , and
reshape K to K ∈ RC/r,H∗W and V to V ∈ RC,H∗W , where
C, H, and W represent the channel numbers, height, and
width of the input feature, and r is the compression ratio
and is set to 16 in our study.

Q = Transpose(Reshape (Q)) ∈ RH∗W,C/r (5)

K = Reshape (K) ∈ RC/r,H∗W (6)

V = Reshape (V) ∈ RC,H∗W (7)

(4) We calculate the similarity matrix E ∈ RH∗W,H∗W

between Q and K to obtain the non-local spatial feature
correlation weight guided by global information, as
follows:

E = σ(Q ∗ K) ∈ RH∗W,H∗W (8)
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FIGURE 3 | The illustration of dual-scale semantic enhance (DsSE) module. “F,” “N,” “E,” and “M” represent the current input feature map, adjacent next feature
map, similarity matrix, and output feature map, respectively. “U” is an upsampling operation, which is obtained by a 1 × 1 convolution and bilinear interpolation
upsampling operation. In addition, “Q,” “K,” and “V” are similar to the three branches of self-attention mechanism (query, key, and value), which are realized by three
1 × 1 convolutions.

where ∗ is the matrix multiplication operation, and σ is
Softmax activation function.

(5) The similarity matrix E and the corresponding V are
weighted by matrix multiplication, and we reshape it to
obtain the final spatial response T ∈ RC,H,W .

T = Reshape(V ∗ ET) ∈ RC,H,W (9)

(6) Finally, we perform element-wise summation operation
between T and the current input feature map F to obtain
the final attention output M ∈ RC,H,W as follows:

M = F + T ∈ RC,H,W (10)

Multiscale Feature Fusion Module
Many previous studies (Oktay et al., 2018; Gu et al., 2019; Feng
et al., 2020) have shown that multiscale context information can
improve the performance of semantic segmentation, whose core
idea is changing global focus to key and local region focus by
attention mechanism. However, the above methods may produce
the semantic gaps between the low-level and high-level feature
maps and ignore the detailed local information. Therefore, to
fully utilize the feature interaction between the local context
and the global context, an MsFF module is proposed to capture
multiscale non-local information with long-range dependency
from different levels of encoders, which is illustrated in Figure 4.

As can be seen from Figure 2, the proposed MsFF module is
appended on the top of encoder path. Suppose that the feature
maps from Stage3, Stage4, and Stage5 are denoted as X3, X4,
and X5. As can be observed from Figure 4, the feature maps X3
and X4 are first downsampled to the same size as X5 and then
feed them and X5 into the three same attention modules named
as AM to generate the corresponding attention feature maps Yi
(i = 3, 4, 5) and their corresponding confidence maps Pi (i = 3,
4, 5), of which the points with high confidence in Pi (i = 3, 4,
5) have a greater possibility to retain the original feature maps
values in Xi (i = 3, 4, 5), and vice versa. As we know, the top

feature map X5 of encoder has the stronger abstract semantics
and the lower spatial resolution without detailed information
in segmentation task. Therefore, the confidence map 1− P5
represents the lost detailed information in the top feature map
X5, where the higher the value of the corresponding position, the
richer the detailed information of the corresponding position. In
addition, the feature maps Y3 and Y4 with limited semantics and
rich detailed information are obtained from relatively shallow
layers. Thus, based on the above facts, we can supplement the
lost detailed information of the corresponding position on the
feature map X5 by using dot product between the confidence map
1− P5 and the sum of attention feature maps Y3 and Y4. Finally,
the feature maps with different scales and semantic information
are fused to obtain the final feature maps of the top layer with
high-level global feature information and low-level local detailed
information, as illustrated in Eq. (11). As illustrated in Figure 4,
the AM consists of two 1 × 1 convolutional operations, a ReLU
activation function, and a sigmoid activation function. Suppose
that the input feature of AM is X ∈ RC,H,W . First, the input
feature X is sequentially fed into a convolutional layer with the
kernel size of C

r × 1× 1, a ReLU activation, a convolutional
layer with the kernel size of C × 1× 1, and a sigmoid activation
function to obtain the confidence map P, where C is channel
number, and r is the compression ratio. Then, we multiply P by
the input feature X to obtain the final output feature map of AM
denoted as Y ∈ RC,H,W .

YF = X5 + Y5 + (1− P5) ∗ (Y3 + Y4) (11)

Feature Decoder
To restore the high-level semantic feature maps generated
by the feature encoder and MsFF module, multiple simple
decoder blocks are adopted in the decoder path. Previous
studies have shown that the deconvolution could learn a self-
adaptive mapping to restore the feature maps with more detailed
information (Apostolopoulos et al., 2017; Gu et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 836327

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-836327 April 16, 2022 Time: 11:26 # 6

Peng et al. AFENet

FIGURE 4 | Overview of the proposed multiscale feature fusion (MsFF) module, where “AM” represents an attention module. In addition, “D,” “S,” and “P” are
downsampling operation, sigmoid activation function, and confidence map, respectively.

Therefore, the deconvolution is adopted in the feature decoder.
As can be observed from Figure 2, the decoder block mainly
consists of a 1 × 1 convolution, a 3 × 3 convolution, and a
1× 1 convolution consecutively. After the last decoder block, the
feature map is restored to 1

2 of the original input image. Finally,
we feed it into a 3× 3 deconvolution and two 1× 1 convolutions
consecutively to obtain the same size segmentation mask as the
original input fundus image.

Loss Function
As illustrated in Figure 2, our framework is an end-to-end DL
network, which takes the fundus images as input and outputs
the predicted segmentation results. The proposed AFENet is
trained to predict each pixel to be foreground or background,
which is a pixel-wise classification problem. A main challenge
in medical image segmentation is that the segmentation target
(OD) takes a small proportion in the fundus images. To solve
the class distribution imbalance problem and similar to Bao et al.
(2020), Cheng (2020), Feng et al. (2020), Zhu et al. (2020, 2021),
Wang et al. (2021), a joint loss Ltotal is adopted to perform the
OD segmentation task, which consists of Dice loss LDice and
binary cross-entropy loss LBCE. The total loss function combined
is defined as follows:

Ltotal = LDice + LBCE (12)

where,
LDice = 1−

2 |X ∗ Y|
|X| + |Y|

(13)

LBCE = −
∑
h,w

(1− Y) log(1− X)+ Y log(X) (14)

where X and Y are the segmentation results and the
corresponding ground truth, h and w are the coordinates of the
pixel in X and Y. As can be seen from Eqs (13) and (14), the Dice
loss and the binary cross-entropy loss are mainly used to optimize
the model in the image and pixel levels, respectively.

EXPERIMENTS AND RESULTS

Dataset
In this study, the 1,702 fundus images of premature infants
were collected using RetCam3 from Guangzhou Women and
Children Medical Center. The gestation ages vary from 26 to
41 weeks, with a mean value of 32 weeks. The collection and
analysis of image data were approved by the institutional review
board of the Guangzhou Women and Children Medical Center
and adhered to the tenets of the Declaration of Helsinki. An
information consent was obtained from the guardians of each
subject to perform all the imaging procedures. The resolution of
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TABLE 1 | Dataset used in this study.

Dataset Training Validation Testing

Num 1,020 341 341

the fundus images was 640× 480. Feng Chen, an ophthalmologist
at Guangzhou Women and Children Medical Center, guided the
pixel-level annotation. All labeled fundus images were divided
into training set, validation set, and testing set, which are shown
in Table 1.

Experimental Setup
Image Processing
To reduce the computational cost and improve the
computational efficiency of the model, all the images were
resized to 256 × 256 by bilinear interpolation and normalized
to (0,1). In addition, online data augmentation, including
horizontal flipping, rotations of -10 to 10 degrees and affine
transformation, was adopted to prevent overfitting and improve
the robust ability of the model.

Parameter Setting
The proposed AFE-Net was performed on the public platform
Pytorch. We used an NVIDIA RTX3090 GPU with 24-GB
memory to train the model with back-propagation algorithm
by minimizing the loss function as illustrated in Eq. (12).
The Adam was used as the optimizer, where initial learning
rate and weight decay were set to 0.0005 and 0.0001,
respectively. The batch size and epoch were set to 16 and
100, respectively. To ensure fairness, all the networks in this
article were trained with the same optimization schemes,
and we saved the best model on validation set in terms
of Dice similarity coefficient (Dsc) indicator. The code of
the proposed AFENet will be released at https://github.com/
yuanyuanpeng0129/AFENet.

Evaluation Metrics
To comprehensively and fairly evaluate the segmentation
performance of different methods, four evaluation indicators
were used, including Dsc and sensitivity (Sen), among which
Dsc was the most commonly used metrics in validating the
performance of segmentation algorithms (Crum et al., 2006;
Milletari et al., 2016; Zhao et al., 2017; Feng et al., 2020). Their
definitions are as follows:

Dsc =
2× TP

2× TP + TN + FP
(15)

Sen =
TP

TP + FN
(16)

where TP, TN, FP, and FN are true positive, true
negative, false positive, and false negative for pixel
classification, respectively.

Results
Qualitative Analysis
Figure 5 shows four examples of segmentation results of the
proposed AFENet and four classical segmentation networks that
are widely used in medical image segmentation tasks, where red
represents the correctly segmented region, whereas yellow and
blue are the results of false-negative segmentation and false-
positive segmentation, respectively. Overall, U-Net performs
the worst, especially in the case of blurred OD, which has
a serious mis-segmentation problem. There are two possible
reasons. First, the simple skip connection of concatenation
in the original U-Net ignored global information and may
introduce interference from local irrelevant features clutter,
which led to the poor performance of U-Net in some medical
image segmentation tasks with complex pathological features.
Second, multiscale context information, which can consider
the structure’s surroundings and avoid ambiguous decisions,
was not effectively extracted and utilized in each single stage.
Compared with U-Net, Att-UNet achieved better segmentation
accuracy with few false negatives, which may be due to the
introduction of the attention gate (AG) module to guide the
model to focus on the salient information in the feature maps
of skip connection (Figures 5B,C). Similar phenomena also
occurred in CE-Net and CPFNet. The performance of CE-
Net and CPFNet was better than UNet, which may benefit
from the effective combination of pretrained ResNet34 and
global/multiscale context information. However, there are still
mis-segmentation problems in the segmentation results of Att-
UNet, CE-Net, and CPFNet, especially in Figure 5A. It is worth
noting that the proposed AFENet achieved the best segmentation
results with fewer false negatives, especially for the segmentation
of fundus images with blurred OD, which are common in fundus
images of premature infants.

Quantitative Analysis
We validated the proposed AFENet on the 341 fundus images
of premature infants. For convenience, the basic U-shape model
with ResNet34 pretrained on ImageNet as the Baseline method.
Table 2 shows the quantitative results of different methods for
the OD segmentation. As can be seen from Table 2, DeepLabV3
achieved the worst segmentation performance in terms of all
segmentation metrics, which is based on FCN architecture and
uses dilated convolution to encode multiscale information at
the top of encoder. In addition, DeepLabV3 uses only one-step
bilinear interpolation for 16-fold upsampling to upsample the
feature map of the encoder to the size of the original image,
which lead to insufficient detail information, resulting in poor
segmentation performance. Although other methods based on
FCN architecture achieved better segmentation performances
than DeepLabV3, such as FCN (Long et al., 2015), DANet
(Fu et al., 2020), GCN (Peng et al., 2017), and PSPNet (Zhao
et al., 2017), the problem of detail information loss caused
by downsampling still existed, which may cause the poor
performance, especially for the fundus images with blurring
OD boundary. In addition, the performance of most U-shape–
based networks is better than the networks based on FCN
architecture, such as U-Net (Ronneberger et al., 2015), Att-UNet
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FIGURE 5 | The segmentation results of different methods, where red represents the correctly segmented region, whereas yellow and blue are the results of
false-negative segmentation and false-positive segmentation, respectively. To clearly observe the details of the segmentation results, we locally enlarge the
segmented target area and place it at the lower right of the corresponding image. In addition, the optic disc is in the green box. (A) Represents the fundus image
with lesions and blurred optic disc. (B,C) Represent normal fundus images with blurred optic disc. (D) Represents the normal fundus image with obvious optic disc.

(Oktay et al., 2018), CE-Net (Gu et al., 2019), CPFNet (Feng et al.,
2020), CS2Net (Mou et al., 2021), HRSeNet (Wang et al., 2019),
DANet (Fu et al., 2020), and TransUNet (Chen et al., 2021), which

TABLE 2 | The results of comparable experiments and ablation studies on OD
segmentation of premature infants.

Methods Dsc (%) Sen (%) Parameters (M)

FCN (Long et al., 2015) 89.42 86.95 18.64

DeepLabV3 (Chen et al., 2017) 85.65 90.07 58.16

DANet (Fu et al., 2020) 89.49 91.26 49.48

GCN (Peng et al., 2017) 88.81 89.53 23.62

PSPNet (Zhao et al., 2017) 91.29 91.68 27.76

U-Net (Ronneberger et al., 2015) 89.87 93.56 7.76

Att-UNet (Oktay et al., 2018) 90.91 95.48 8.73

CE-Net (Gu et al., 2019) 91.22 93.74 29.00

CPFNet (Feng et al., 2020) 91.40 89.34 43.27

UNet++ (Zhou et al., 2018) 90.92 92.51 9.16

CS2Net (Mou et al., 2021) 90.64 90.24 8.93

HRSeNet (Wang et al., 2019) 90.88 93.03 1.63

UNet + DsSE + MsFF 0.9130 0.9257 8.09

TransUNet (Chen et al., 2021) 0.9012 0.9314 105.28

Baseline 91.20 91.70 21.66

Baseline + DsSE 92.58 92.35 21.93

Baseline + MsFF 92.75 93.34 21.91

AFENet 93.12 93.22 22.18

Bold values are indicate the best performance.

may be due to the introduction of skip connection between the
encoder and the corresponding decoder to alleviate the problem
of information loss caused by downsampling. It is worth noting
that the proposed AFENet obtains better performance than other
segmentation methods in terms of the main evaluation indicator
(Dsc). First, compared with Baseline, the performance of the
proposed AFENet has been greatly improved, which improves the
Dsc and Sen by 2.11 and 1.67% respectively, and achieves 93.12%
for Dsc and 93.22% for Sen. Then, compared with other state-of-
the-art segmentation networks, the proposed AFENet obtained
an overall improvement in terms of the main evaluation indicator
Dsc with comparable or less model complexity. For example,
compared with the best performance among the comparison
methods (CPFNet), the main segmentation evaluation indicator
of Dsc of the proposed AFENet increased by 1.88%. Compared
with TransUNet (Chen et al., 2021), which has the largest number
of model parameters, the performance of the proposed AFENet
obtained an overall improvement, especially the Dsc indicator.
In addition, compared with GCN (Peng et al., 2017), which has
the comparable model complexity, our proposed AFENet has
also made great improvement in terms of all evaluation metrics.
Especially, we also replaced Backbone with U-Net to further
verify the effectiveness and generality of the two modules as
shown in Table 2. There are two main findings from Table 2.
First, the proposed DsSE module and MsFF module embedded
in the U-Net (UNet + DsSE + MsFF) with a small increase
in the number of model parameters achieved improvement in
terms of the main evaluation indicator Dsc. Second, compared
with the UNet+ DsSE+MsFF, the proposed AFENet taking the
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TABLE 3 | Statistical analysis (p-value) of the proposed AFE-Net compared with
other CNN-based methods.

Methods Dsc

AFENet-FCN (Long et al., 2015) < 1E-4

AFENet-DeepLabV3 (Chen et al., 2017) < 1E-4

AFENet-DANet (Fu et al., 2020) < 1E-4

AFENet-GCN (Peng et al., 2017) < 1E-4

AFENet-PSPNet (Zhao et al., 2017) 0.0006

AFENet-U-Net (Ronneberger et al., 2015) < 1E-4

AFENet-Att-UNet (Oktay et al., 2018) 0.0004

AFENet-CE-Net (Gu et al., 2019) 0.0016

AFENet-CPFNet (Feng et al., 2020) < 1E-4

AFENet-UNet++ (Zhou et al., 2018) 0.0055

AFENet-CS2Net (Mou et al., 2021) 0.0001

AFENet-HRSeNet (Wang et al., 2019) < 1E-4

AFENet-UNet + DsSE + MsFF 0.0004

AFENet-TransUNet (Chen et al., 2017) < 1E-4

AFENet-Baseline 0.0019

pretrained ResNet34 as Backbone gets an overall improvement
in terms of all evaluation indicators (1.99% for Dsc and
0.70% for Sen), which further proves the effectiveness of the
pretrained ResNet34 as backbone. These results demonstrate the
effectiveness of the proposed AFENet in our task.

Statistical Significance Assessment
To further investigate the statistical significance of the
performance improvement by the proposed AFENet over
other state-of-art segmentation networks, paired t-test was

conducted. The p-values of the main evaluation indicator
(Dsc) are listed in Table 3. As can be observed from Table 3,
all the improvements for Dsc of the proposed AFENet are
statistically significant with p < 0.05. These results demonstrate
that the proposed AFENet can improve the performance of OD
segmentation in this study.

Ablation Experiments
Ablation Study for Dual-Scale Semantic
Enhancement Module
As can be seen from Figure 2, we proposed a novel dual-scale
semantic enhancement (DsSE) module to replace the simple
skip connection in the original U-shape network. To prove the
effectiveness of the proposed DsSE module, we conducted a
series of ablation experiments for OD segmentation of premature
infants. As shown in Table 2, the Baseline + DsSE achieved
improvement in terms of all evaluation indexes. Compared with
the Baseline, the Dsc and Sen of Baseline + DsSE increased
from 91.20 and 91.70% to 92.58 and 92.35%, respectively, which
benefits from the fact that the DsSE module can help the U-shape
network implicitly learn to suppress irrelevant information and
highlight salient features useful for a specific task. These results
indicate the effectiveness of the proposed DsSE module.

Ablation Study for Multiscale Feature Fusion Module
It can be observed from Table 2 that the Baseline + MsFF
also obtained an overall improvement in terms of all evaluation
indexes. Compared with the Baseline, the Dsc and Sen of the
Baseline + MsFF increased by 1.70 and 1.79%, respectively,
which benefits the fact that the MsFF module can guide the
model to fully utilize the feature interaction between the local

FIGURE 6 | The visualization results of feature maps at the top of the encoder. (A) Original images. (B) Ground truth. (C) Baseline. (D) Baseline + MsFF. (E) AFENet.
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context and the global context and promotes the aggregation
of low-level weak semantic information with high-level strong
semantic information. In addition, to further demonstrate the
effectiveness of the proposed MsFF module, the feature maps
are visualized for the qualitative analysis, which are the last
convolutional outputs of the encoder and show the focus of
the network. We compared the visualization results of MsFF-
intergraded network (Baseline +MsFF) with Baseline, as shown
in Figure 6. It can be seen from Figures 6A–D that the proposed
MsFF module can focus on the target object regions better than
Baseline, which indicates that the proposed MsFF module can
effectively aggregate multiscale context information with long-
range dependency and improve the segmentation performance.

CONCLUSION AND DISCUSSION

Accurate OD segmentation of premature infants is still a
challenging task because of the irregular shapes with various
sizes, indistinguishable boundaries, and low contrast between
background and OD area in fundus images of premature infants.
In this study, to solve these problems, a novel segmentation
network named AFENet is proposed to segment the OD in
fundus images of premature infants. First, to alleviate the
feature learning tendency problem that may be caused by the
introduction of simple skip connection between the encoder
and the corresponding decoder of the U-shaped based networks,
a novel attention module named DsSE module is designed
to reconstruct the skip connection, which can enhance the
semantic contextual information, highlight the salient features,
and improve the ability of model learning. Then, to reduce
the semantic gaps between the low-level and high-level feature
maps, another novel module named MsFF module was developed
to fuse multiple-scale feature maps of different levels by using
an attention mechanism, which can fully utilize the feature
interaction between the local context and the global context
and further improve the segmentation performance. Finally, we
conducted a series of experiments on the dataset of fundus images
of premature infants to verify the effectiveness of the proposed
method. Compared with Baseline, the proposed AFENet with two
designed attention modules can adaptively focus on target-related
area of fundus images and efficiently improve the segmentation
performance of OD, which can be seen from Figures 6C,E
and Table 2. Compared with other state-of-the-art CNN-based
segmentation networks, the segmentation performance of the
proposed AFENet has been improved significantly, as shown in
Tables 2, 3. As can be seen from Figure 5, compared with the
four classical segmentation networks, our AFENet achieves best
segmentation results with fewer false negatives and false positives,
especially for the segmentation of fundus images with blurred
OD, which prove the effectiveness of the proposed AFENet.

The ablation experiments have shown that using the DsSE
module or the MsFF module alone can improve the segmentation
accuracy, whereas the integration of two modules together can
achieve greater improvement. It can be observed from Table 2,
for Dsc indicator, that the improvement of 1.51, 1.70, and
2.11% can be achieved by using the DsSE module or the MsFF

module alone and the integration of the two modules together,
respectively. In addition, taking the proposed MsFF module, for
example, the visualization results in Figures 6C,D show that
the proposed MSFF module can better focus on the location of
key area related to OD segmentation than the Baseline, which
further demonstrates that the newly designed MsFF module can
accurately learn the effective features.

In conclusion, the proposed AFENet holds promise for OD
segmentation in fundus images of premature infants and provides
the new opportunities and directions for the zoning of ROP and
the auxiliary diagnosis of PVWM damage. We believe that our
AFENet can also be applied to other medical image segmentation
tasks, which requires further exploration and verification. In the
future, we will collect more fundus images of premature infants,
aiming at focusing on the further performance evaluation of
the proposed method and the possibility of diagnosis for other
diseases related to premature infants.
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